甲乙小朋友的房子

甲乙小朋友很笨,但甲乙小朋友不会放弃

0%

Java-LinkedHashMap原理探究

在之前的 系统设计-缓存算法 一文里我用到了LinkedHashMap。这是最近刚接触到的一个新的数据结构。在此进行原理的探究。

LinkedHashMap 是 HashMap 的一个子类,它保留插入的顺序,如果需要输出的顺序和输入时的相同,那么就选用 LinkedHashMap。

LinkedHashMap 实现与 HashMap 的不同之处在于,LinkedHashMap 维护着一个运行于所有条目的双重链接列表。此链接列表定义了迭代顺序,该迭代顺序可以是插入顺序或者是访问顺序。

注意,此实现不是同步的。如果多个线程同时访问链接的哈希映射,而其中至少一个线程从结构上修改了该映射,则它必须保持外部同步。

根据链表中元素的顺序可以分为:按插入顺序的链表,和按访问顺序(调用 get 方法)的链表。默认是按插入顺序排序,如果指定按访问顺序排序,那么调用get方法后,会将这次访问的元素移至链表尾部,不断访问可以形成按访问顺序排序的链表。

Demo1:按照插入顺序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Map<Integer, Integer> map = new LinkedHashMap<>();

map.put(1,1);
map.put(2,2);
map.put(3,3);

Iterator iter = map.entrySet().iterator();
while (iter.hasNext()) {
Map.Entry entry = (Map.Entry) iter.next();
System.out.println(entry.getKey() + "=" + entry.getValue());
}


输出:

1=1
2=2
3=3 // 最近插入的元素最后出来

Demo2:按照插入、访问顺序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Map<Integer, Integer> map = new LinkedHashMap<>(capacity, 0.75f, true); // 注意这个true

map.put(1,1);
map.put(2,2);
map.put(3,3);

map.get(1);

Iterator iter = map.entrySet().iterator();
while (iter.hasNext()) {
Map.Entry entry = (Map.Entry) iter.next();
System.out.println(entry.getKey() + "=" + entry.getValue());
}


输出:

2=2
3=3
1=1 // 最近访问的元素最后出来

LinkedHashMap实现

对于 LinkedHashMap 而言,它继承与 HashMap(public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V>)、底层使用哈希表与双向链表来保存所有元素。其基本操作与父类 HashMap 相似,它通过重写父类相关的方法,来实现自己的链接列表特性。下面我们来分析 LinkedHashMap 的源代码。

成员变量

LinkedHashMap 采用的 hash 算法和 HashMap 相同,但是它重新定义了数组中保存的元素 Entry,该 Entry 除了保存当前对象的引用外,还保存了其上一个元素 before 和下一个元素 after 的引用,从而在哈希表的基础上又构成了双向链接列表。看源代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/**
* The iteration ordering method for this linked hash map: <tt>true</tt>
* for access-order, <tt>false</tt> for insertion-order.
* 如果为true,则按照访问顺序;如果为false,则按照插入顺序。
*/
private final boolean accessOrder;
/**
* 双向链表的表头元素。
*/
private transient Entry<K,V> header;

/**
* LinkedHashMap的Entry元素。
* 继承HashMap的Entry元素,又保存了其上一个元素before和下一个元素after的引用。
*/
private static class Entry<K,V> extends HashMap.Entry<K,V> {
Entry<K,V> before, after;
……
}

LinkedHashMap 中的 Entry 集成于 HashMap 的 Entry,但是其增加了 before 和 after 的引用,指的是上一个元素和下一个元素的引用。

初始化

通过源代码可以看出,在 LinkedHashMap 的构造方法中,实际调用了父类 HashMap 的相关构造方法来构造一个底层存放的 table 数组,但额外可以增加 accessOrder 这个参数,如果不设置,默认为 false,代表按照插入顺序进行迭代;当然可以显式设置为 true,代表以访问顺序进行迭代。如:

1
2
3
4
public LinkedHashMap(int initialCapacity, float loadFactor,boolean accessOrder) {
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
}

我们已经知道 LinkedHashMap 的 Entry 元素继承 HashMap 的 Entry,提供了双向链表的功能。在上述 HashMap 的构造器中,最后会调用 init() 方法,进行相关的初始化,这个方法在 HashMap 的实现中并无意义,只是提供给子类实现相关的初始化调用。

但在 LinkedHashMap 重写了 init() 方法,在调用父类的构造方法完成构造后,进一步实现了对其元素 Entry 的初始化操作。

1
2
3
4
5
6
7
8
9
10
/**
* Called by superclass constructors and pseudoconstructors (clone,
* readObject) before any entries are inserted into the map. Initializes
* the chain.
*/
@Override
void init() {
header = new Entry<>(-1, null, null, null);
header.before = header.after = header;
}

put方法

LinkedHashMap 并未重写父类 HashMap 的 put 方法,而是重写了父类 HashMap 的 put 方法调用的子方法: void recordAccess(HashMap m) void addEntry(int hash, K key, V value, int bucketIndex) void createEntry(int hash, K key, V value, int bucketIndex) 提供了自己特有的双向链接列表的实现。我们在之前的文章中已经讲解了HashMap的put方法,我们在这里重新贴一下 HashMap 的 put 方法的源代码:

HashMap put :

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
1. 计算key的hashCode值。其目的是为了尽可能的让键值对可以分不到不同的桶中
2. 根据hashCode得到在table中的索引i
3. 将value插入到table中:
3.1 如果table[i]不为空,则表示两个key的hash值重叠了。那就根据key将值插入table[i]指向的链表中:
3.1.1 要么覆盖原来的值(曾经有过这个key)
3.1.2 要么插入链表末尾(曾经没有过这个key) –> 调用addEntry()
3.2 如果table[i]为空,就直接插入 –> 调用addEntry()

public V put(K key, V value) {
if (key == null)
return putForNullKey(value);
int hash = hash(key); // 获取hash值
int i = indexFor(hash, table.length); // 获取table里的索引
for (Entry<K,V> e = table[i]; e != null; e = e.next) { // 遍历table[i]的每个值
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { // 覆盖原来的
V oldValue = e.value;
e.value = value;
e.recordAccess(this); // 在linkedHashMap中重写
return oldValue;
}
}

modCount++;
addEntry(hash, key, value, i); // 在linkedHashMap中重写
return null;
}

重写方法:

LinkedHashMap将最新添加的元素保持在链表header。也就是当新建一个entry节点时,将entry加入到链表头部。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
/**
* This method is invoked by the superclass whenever the value
* of a pre-existing entry is read by Map.get or modified by Map.set.
* If the enclosing Map is access-ordered, it moves the entry
* to the end of the list; otherwise, it does nothing.
*/
//记录访问顺序
void recordAccess(HashMap<K,V> m) {
LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
if (lm.accessOrder) {
lm.modCount++;
remove();
addBefore(lm.header); // 将当前访问的对象插入到header之前
}
}

void addEntry(int hash, K key, V value, int bucketIndex) {
// 调用create方法,将新元素以双向链表的的形式加入到映射中。
createEntry(hash, key, value, bucketIndex);

// 删除eldest元素
Entry<K,V> eldest = header.after;
//如果有必要移除最老的节点,那么就移除。LinkedHashMap默认removeEldestEntry总是返回false
//也就是这里if里面的语句永远不会执行
//这里removeEldestEntry主要是给LinkedHashMap的子类留下的一个钩子
//子类完全可以根据自己的需要重写removeEldestEntry,后面我会举个现实中的例子🌰
if (removeEldestEntry(eldest)) {
removeEntryForKey(eldest.key);
} else {
if (size >= threshold)
resize(2 * table.length);
}
}
// 在新建节点之后调用 addBefore 方法将新添加的节点放在header之前
void createEntry(int hash, K key, V value, int bucketIndex) {
HashMap.Entry<K,V> old = table[bucketIndex];
Entry<K,V> e = new Entry<K,V>(hash, key, value, old);
table[bucketIndex] = e;
// 调用元素的addBrefore方法,将元素e加入到header之前
e.addBefore(header);
size++;
}

/**
* Inserts this entry before the specified existing entry in the list.
*/
// 将this添加到existingEntry之前
private void addBefore(Entry<K,V> existingEntry) {
after = existingEntry;
before = existingEntry.before;
before.after = this;
after.before = this;
}


/**
* Removes this entry from the linked list.
*/
//删除一个节点时,需要把
//1. 前继节点的后继指针 指向 要删除节点的后继节点
//2. 后继节点的前继指针 指向 要删除节点的前继节点
private void remove() {
before.after = after;
after.before = before;
}

protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
return false;
}

get方法

LinkedHashMap 重写了父类 HashMap 的 get 方法,实际在调用父类 getEntry() 方法取得查找的元素后,再判断当排序模式 accessOrder 为 true 时,记录访问顺序,将最新访问的元素添加到双向链表的表头,并从原来的位置删除。由于的链表的增加、删除操作是常量级的,故并不会带来性能的损失。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
public V get(Object key) {
// 调用父类HashMap的getEntry()方法,取得要查找的元素。
Entry<K,V> e = (Entry<K,V>)getEntry(key);
if (e == null)
return null;
// 记录访问顺序。
e.recordAccess(this);
return e.value;
}

// 记录访问顺序
void recordAccess(HashMap<K,V> m) {
LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
// 如果定义了LinkedHashMap的迭代顺序为访问顺序,
// 则删除以前位置上的元素,并将最新访问的元素添加到链表表头。
if (lm.accessOrder) {
lm.modCount++;
remove();
addBefore(lm.header);
}
}

/**
* Removes this entry from the linked list.
*/
private void remove() {
before.after = after;
after.before = before;
}

/**clear链表,设置header为初始状态*/
public void clear() {
super.clear();
header.before = header.after = header;
}

排序模式

LinkedHashMap 定义了排序模式 accessOrder,该属性为 boolean 型变量,对于访问顺序,为 true;对于插入顺序,则为 false。一般情况下,不必指定排序模式,其迭代顺序即为默认为插入顺序。

这些构造方法都会默认指定排序模式为插入顺序。如果你想构造一个 LinkedHashMap,并打算按从近期访问最少到近期访问最多的顺序(即访问顺序)来保存元素,那么请使用下面的构造方法构造 LinkedHashMap:public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder)

该哈希映射的迭代顺序就是最后访问其条目的顺序,这种映射很适合构建 LRU 缓存。LinkedHashMap 提供了 removeEldestEntry(Map.Entry<K,V> eldest) 方法。该方法可以提供在每次添加新条目时移除最旧条目的实现程序,默认返回 false,这样,此映射的行为将类似于正常映射,即永远不能移除最旧的元素。

我们会在后面的文章中详细介绍关于如何用 LinkedHashMap 构建 LRU 缓存。

总结

其实 LinkedHashMap 几乎和 HashMap 一样:从技术上来说,不同的是它定义了一个 Entry<K,V> header,这个 header 不是放在 Table 里,它是额外独立出来的。LinkedHashMap 通过继承 hashMap 中的 Entry<K,V>,并添加两个属性 Entry<K,V> before,after,和 header 结合起来组成一个双向链表,来实现按插入顺序或访问顺序排序。

使用LinkedHashMap实现LRU Cache

LinkedHashMap 的访问序可以方便地用来实现一个 LRU Cache。在访问序模式下,尾部节点是最近一次被访问的节点 (least-recently),而头部节点则是最远访问 (most-recently) 的节点。因而在决定失效缓存的时候,将头部节点移除即可。

但是,由于链表是无界的,但缓存往往是资源受限的,如何确定何时移除最远访问的缓存呢?前面分析过,在 afterNodeInsertion 中,会调用 removeEldestEntry 来决定是否将最老的节点移除,因而我们可以使用 LinkedHashMap 的子类,并重写 removeEldestEntry 方法,当 Enrty 的数量超过缓存的容量是返回 true 即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
private LinkedHashMap<Integer, Integer> cache;
private int caplicity;

public LRUCache(int capacity) {
this.caplicity = capacity;
cache = new LinkedHashMap<Integer, Integer>(capacity, 0.75f, true){
// 超出容量就删除最老的值
@Override
protected boolean removeEldestEntry(Map.Entry<Integer,Integer> eldest){
return size() > capacity;
}
};
}

public int get(int key) {
return cache.getOrDefault(key, -1);
}

public void put(int key, int value) {
cache.put(key,value);
}

参考文献

  1. Java 容器源码分析之 LinkedHashMap
  2. LinkedHashMap 的实现原理
  3. Java LinkedHashMap源码解析